Kleene’s Theorem

Some preliminary stuff:

We can impose an ordering upon the states in any FA: We assume w.l.o.g. that each state in a FA is numbered from 1 to n where $|Q| = n$.

We define
$$R_{pq}^{(i)} = \{ x \in \Sigma^* | \hat{\delta}(p, x) = q \}$$
This is the set of strings that “move” M from state p to state q.

Given that FA’s do not exhibit nondeterminism each input string represents a single path from the start state to some concluding state (hopefully the concluding state is also an accepting state). Given this notion of a path, we can also say that a given path goes through a state.

$x \in \Sigma^*$ represents a path through a FA M. x goes through state s if $x = yz$, $|y|, |z| > 0$, $\hat{\delta}(p, y) = s$ and $\hat{\delta}(s, z) = q$ (note: $\hat{\delta}(p, x) = q$).

We also define:
$$R_{pq}^{(J)} = \{ x \in \Sigma^* | x \text{ corresponds to a path from } p \text{ to } q \text{ that goes through no state numbered higher than } J \}.$$

Notice that the notion of going through a state does not count the starting and stopping states. A path can start at state 7, end at state 8, and only go through states 1, 2, and 4. In this case we say that this path from $p = 7$ to $q = 8$ goes through no state numbered higher than $J = 4$.

The path represented by ϵ or single elements of Σ do not go through any states.

Finally we observe that $R_{pq}^{(n)} = R_{pq}^{(1)}$. This is true since there is no state numbered higher than n is our FA.

In order to prove our theorem:

1. Show each set $R_{pq}^{(n)}$ is a regular language
2. This is equivalent to showing each set $R_{pq}^{(1)}$ is regular language.
3. The sets $R_{pq}^{(1)}, f_i \in F$ are special cases of $R_{pq}^{(1)}$; hence each set $R_{pq}^{(1)}$ is a regular language.
4. The union of a set of regular languages is itself a regular language (regular languages are closed under union).
Theorem 1

If \(M = (Q, \Sigma, \delta, q_0, F) \) is a FA recognizing the language \(R \) \((R = L(M)) \), there is a regular expression over \(\Sigma \) corresponding to \(R \).

Proof: We prove the theorem by using induction to show that for every \(p, p \geq 1 \), and \(q, q \leq n \) each set \(R_{pq}^{(j)} \), with \(0 \leq J \leq n \) is a regular language.

Basis step: For every \(p \) and \(q \), the set \(R_{pq}^{(0)} \) represents a regular language. There is no state numbered 0; hence there is no state less than 0. Any path from \(p \) to \(q \), therefore goes through no state (remember we do not consider the states \(p \) and \(q \)). Each set \(R_{pq}^{(0)} \) therefore corresponds to either a single input symbol (a path of one transition is the only type of path that goes through no other states), or \(\epsilon \).

\[R_{pq}^{(0)} \subseteq \Sigma \cup \{\epsilon\}. \]

Since every finite language is regular; the set \(R_{pq}^{(0)} \) is a regular language.

Induction Hypothesis: For \(0 \leq k \leq (n - 1) \) and for every \(p \) and \(q \), with \(p \geq 1 \), and \(q \leq n \), the set \(R_{pq}^{(k)} \) represents a regular language.

Need to show: For every \(p \) and \(q \), with \(p \geq 1 \), and \(q \leq n \), the set \(R_{pq}^{(k+1)} \) is a regular language.

A string \(s \) is a member of the set \(R_{pq}^{(k+1)} \) if \(x \) represents a path from \(p \) to \(q \) that goes through no state numbered higher than \(k + 1 \). There are two cases to consider:

1. \(x \) bypasses state \(k + 1 \) completely (there is only one state labeled \(k + 1 \)). This implies that \(x \in R_{pq}^{(k)} \)

2. \(x \) goes from state \(p \) to state \(k + 1 \), from state \(k + 1 \) \(x \) can go to other (lower numbered) states always returning to state \(k + 1 \) (i.e. looping back to state \(k + 1 \) some finite number of times), finally \(x \) goes from state \(k + 1 \) to state \(q \). In this case we write \(x = x_1yx_2 \) (i.e. there are three components to the finite string \(x \)).

 (a) \(\hat{\delta}(p, x_1) = k + 1 \)

 (b) \(\hat{\delta}(k + 1, y) = k + 1 \)

 (c) \(\hat{\delta}(k + 1, x_2) = q \)

It should be clear that \(x_1 \in R_{pq}^{(k)} \) and \(x_2 \in R_{pq}^{(k)} \) (i.e. arriving at state \(k + 1 \) for the first time \(x \) only goes through states numbered no higher than \(k \), and leaving state \(k + 1 \) for the last time, string \(x \) goes to \(q \) passing through no states numbered higher than \(k \)).

There are two cases to consider:

 (a) \(y = \epsilon \). The set \(R_{pq}^{(k+1)} \) represents a regular language (the concatenation of two regular strings).
(b) \(y \neq \epsilon \). The path that the string \(x \) represents loops from state \(k + 1 \) back to state \(k + 1 \) one or more times. We can represent each looping from state \(k + 1 \) back to state \(k + 1 \) by some portion of the string \(y \). \(y = y_1 y_2 \ldots y_r \). Each \(y_i \) portion of the string \(y \) is an element of the set \(R_{k+1}^{(k)} \). Hence \(y \in (R_{k+1}^{(k)})^* \)

We can now say

\[
R_{pq}^{(k+1)} = R_{pq}^{(k)} \cup R_{pk+1}^{(k)}(R_{k+1}^{(k)})^* R_{k+1q}^{(k)}
\]

By the induction hypothesis each set on the right side represents a regular language (regular languages are closed under union, concatenation and *). Therefore the set \(R_{pq}^{(k+1)} \) represents a regular language (completing the induction proof, and proving the theorem). ☐

We have shown that

1. For each \(p \) and \(q \) and \(J, 0 \leq J \leq n \), the set \(R_{pq}^{(J)} \) is a regular language.

2. \(R_{pq}^{(i)} = R_{pq}^{(n)} \) Hence the set \(R_{pq}^{(i)} \) is a regular language.

3. since \(L(M) = \cup_{i \in F} R_{q_0 a_i}^{(i)} \), \(L(M) \) is a regular language.