Exponential Functions

Linear functions are used to describe quantities that grow (or decline) at a constant rate. Quadratic functions are used to describe quantities whose rates of growth grow (or decline) at constant rates. But there is a commonly occurring class of phenomena in which the important quantities grow in a manner different from either of these.

Example: Some **population growth models** are based on a simple assumption: the number of births at any given moment in time is determined by the (essentially) fixed percentage of the population representing those females who are giving birth. That is, *population grows at a fixed percentage rate of change.* For instance, Example 2, p. 107, describes how the population of Mexico increased at a constant annual percentage rate of 2.6% per year during the 1980s.

Example: Many financial investment instruments grow via **compound interest** at constant percentage interest rates. See p. 112, #20.

Example: **Radioactive decay** arises when a fixed percentage of the atoms in a substance spontaneously break down into smaller components, releasing significant amounts of energy in the process. See Example 3, p. 107-108.
Numerical investigation of these different kinds of quantities display similar behaviors: an initial amount \(a \) of the quantity grows (or decays) at a fixed percentage rate of change \(r \) with time \(t \) (initial time corresponding to \(t = 0 \)). Thus,

the amount at time \(t = 1 \) is \(a(1+r) \),
the amount at time \(t = 2 \) is \([a(1+r)](1+r) = a(1+r)^2 \),
the amount at time \(t = 3 \) is \([a(1+r)^2](1+r) = a(1+r)^3 \),

and so on. It follows that the function for the amount present at any time \(t \) is given by the formula \(f(t) = a(1+r)^t \), or, if we put \(b = 1+r \), the formula is more simply given as

\[
f(t) = ab^t.
\]

The number \(b = 1+r \) is called the growth factor (or decay factor); when the quantity grows, \(r \) is positive and \(b > 1 \), and when the quantity decays, \(r \) is negative and \(b < 1 \).

As the formula shows the input variable \(t \) in the exponent, the function \(f \) above is called an exponential function. Exponential functions are used to model phenomena that grow (or decay) at constant percentage rates.