Number theory is the study of the arithmetical properties of the integers.

You have been working with integers since you were in pre-Kindergarten, but these objects have never been formalized for you before. What *is* an integer?

In 1895, Giuseppe Peano crafted axioms for the integers that succeeded in such a formalization:

The **natural numbers** form a set \mathbb{N} with the following properties.
1. (a) $1 \in \mathbb{N}$ (that is, \mathbb{N} is not the empty set);
2. (b) Every $x \in \mathbb{N}$ has a unique successor $x' \in \mathbb{N}$ (whence we write $2 = 1', 3 = 2', 4 = 3'$, etc.)
3. (c) 1 is not the successor of any $x \in \mathbb{N}$;
4. (d) [Principle of Induction] If S is a subset of \mathbb{N} so that
 - $1 \in S$, and
 - whenever $x \in S$ then $x' \in S$,
 then $S = \mathbb{N}$.

These axioms are sufficiently powerful to derive all of arithmetic. For instance,

Proposition For all $x \in \mathbb{N}$, $x' \neq x$.

Proof Let $S = \{x \in \mathbb{N} \mid x' \neq x\}$. By Axiom (c), $1 \in S$. Also, if $x \in S$, then $x' \neq x$. But if $(x')' = x'$, we would have by Axiom (b) that $x' = x$, a contradiction. So $(x')' \neq x'$, whence $x' \in S$. It follows by Axiom (d) that $S = \mathbb{N}$. //
Proposition For every $x \in \mathbb{N}$ different from 1, there exists a $y \in \mathbb{N}$ for which $x = y'$.

Proof Let $S = \{x \in \mathbb{N} \mid x = 1$ or $\exists y$ with $x = y'\}$. Then certainly $1 \in S$. Also, if $x \in S$ is different from 1 then its successor x' must be in S by definition of S. By induction therefore, $S = \mathbb{N}$. //

We can formally define **addition** on the natural numbers:
- For every $x \in \mathbb{N}$, let $x+1$ be defined as x'; and
- For any $y \in \mathbb{N}$, define $x+y' = (x+y)'$.

Example

\[5 + 3 = 5 + 2' \]
\[= (5 + 2)' \]
\[= (5 + 1)' \]
\[= ((5 + 1)')' \]
\[= ((5')')' = (6')' = 7' = 8 \]

The familiar properties of associativity and commutativity of addition now follow from the Peano axioms.

Theorem \((x + y) + z = x + (y + z)\)

Proof Take first the case $z = 1$:

\[(x + y) + 1 = (x + y)' = x + y' = x + (y + 1). \]
Now assume inductively that the property holds for some particular larger value of \(z \); then

\[
(x + y) + z' = ((x + y) + z)'
= (x + (y + z))'
= x + (y + z)'
= x + (y + z')
\]

So the property holds for all \(z \). //

Proposition \(x + 1 = 1 + x \)

Proof Let \(S = \{ x \in \mathbb{N} \mid x + 1 = 1 + x \} \). Clearly, \(1 \in S \). If now \(x \in S \) then \(x' = x + 1 = 1 + x \), so

\[
x' + 1 = (1 + x) + 1 = 1 + (x + 1) = 1 + x'
\]

whence \(x' \in S \). It follows by Axiom (d) that \(S = \mathbb{N} \). //

Theorem \(x + y = y + x \)

Proof By the previous proposition we know that the relation holds when \(y = 1 \). So now assume inductively that the property holds for any particular value of \(y \); then

\[
x + y' = x + (y + 1) = (x + y) + 1
= (y + x) + 1 = y + (x + 1)
= y + (1 + x) = (y + 1) + x
= y' + x
\]
We could continue this development to show how Peano’s axioms lead to formal definitions that extend \(\mathbb{N} \) by defining the number 0 and the concept of additive inverse \((-x)\) and the subtraction operation to obtain the larger set \(\mathbb{Z} \) of all integers, positive, negative and zero. (\(\mathbb{Z} \) stands for the Ger. *zahlen* = Eng. *number*.) We could also define formally the ordering relations \(<\) and \(>\) for integers, and the operation of multiplication — along with its familiar properties (notably the distributive law \(x(y + z) = xy + xz \)). But all this would take us too far from our focus.

Instead let us remind ourselves that Peano’s Axiom (d) is often called the **Weak Principle of Induction** to distinguish it from

[The Strong Principle of Induction] If \(S \) is a subset of \(\mathbb{N} \) so that
- \(1 \in S \), and
- whenever all of 1, 2, 3, \(\ldots \), \(x \in S \) then \(x' \in S \),
then \(S = \mathbb{N} \).

This is a stronger form of the principle since it appears to require a more stringent condition for the set \(S \) (*all of 1, 2, 3, \(\ldots \), \(x \in S \)) than is required in the Weak Principle of Induction. However, as we will soon see, both Induction Principles are logically equivalent to each other: the weak form is no weaker than the strong form. Indeed, both principles are also equivalent to a more straightforward property of the natural numbers:
[The Well-Ordering Principle] Every nonempty subset of \(\mathbb{N} \) has a least element.

Theorem The following are logically equivalent:

 I. The Weak Principle of Induction
 II. The Strong Principle of Induction
 III. The Well-Ordering Principle

Proof [I \(\Rightarrow \) II.] Suppose that \(T \subseteq \mathbb{N} \) satisfies \(1 \in T \), and that whenever \(1, 2, \ldots, x \in T \) it follows that \(x+1 \in T \) as well. We want to use Weak Induction to prove that \(T = \mathbb{N} \). So let \(S = \{ x \in \mathbb{N} \mid \text{all of } 1, 2, \ldots, x \in T \} \).

Certainly \(1 \in S \). Also, if \(x \in S \), then \(1, 2, \ldots, x \in T \), so by the definition of \(T \), \(x+1 \in T \). But then all of \(1, 2, \ldots, x, x+1 \in T \), so \(x+1 \in S \), too. By the Weak Induction Principle applied to \(S \), we conclude that \(S = \mathbb{N} \). As this implies that \(T = \mathbb{N} \), we have deduced that the Strong Principle of Induction holds.

[II \(\Rightarrow \) III.] Let \(U \) be a subset of \(\mathbb{N} \) that has no least element. Then define \(T = \{ x \in \mathbb{N} \mid x \notin U \} \). If \(1 \in U \), then since \(1 \) is not the successor of any natural number, it is the least element of \(U \), contradicting the definition of \(U \). So \(1 \notin U \Rightarrow 1 \in T \). If \(2 \in U \), then since \(1 \notin U \), \(2 \) would be the least element of \(U \), another contradiction. Thus, \(2 \notin U \Rightarrow 2 \in T \). Continuing in this way, we can show that for any \(x \in \mathbb{N} \), we must have \(1, 2, \ldots, x \in T \). So by Strong Induction applied to the set \(T \), we conclude that \(T = \mathbb{N} \). But then \(U \) must be empty. So any nonempty subset of \(\mathbb{N} \) must have a least element.
Suppose that \(S \subseteq \mathbb{N} \) satisfies \(1 \in S \), and that whenever \(x \in S \) it follows that \(x+1 \in S \) as well. Then define \(U = \{ x \in \mathbb{N} | x \notin S \} \). If \(U \) is nonempty, then by the Well-Ordering Principle, it has a least element \(x \). Since \(1 \in S \), \(x \) cannot be \(1 \), so \(x \) is the successor of some \(y \in \mathbb{N} \). Since \(x \) is the least element of \(U \), \(y \notin U \Rightarrow y \in S \). But by the definition of \(S \), \(x = y+1 \in S \) as well. But this is impossible, because \(x \in S \Rightarrow x \notin U \), meaning that \(x \) cannot be the least element of \(U \). This contradiction implies that the assumption that \(U \) was nonempty must be false; that is, \(U = \emptyset \). But then \(S = \mathbb{N} \), which shows that the Weak Induction Principle holds. //

We conclude with three examples showing how these principles can be useful tools for proving theorems about the natural numbers.

Example of the Weak Induction Principle at work:

Theorem Let \(F_1 = 1, F_2 = 1 \), and \(F_{n+1} = F_n + F_{n-1} \) recursively define the (familiar) Fibonacci numbers. Then for all \(n \geq 1 \),

\[
\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}.
\]

Proof (Let \(S \) be the set of subscripts \(n \) for which the formula holds; we will show by Weak Induction that \(S = \mathbb{N} \).) The case \(n = 1 \) is clear as \(1^2 = 1 \cdot 1 \). If we assume that the formula holds for some particular choice of \(n \), then
\[
\sum_{k=1}^{n+1} F_k^2 = \left(\sum_{k=1}^{n} F_k^2 \right) + F_{n+1}^2 \\
= F_n F_{n+1} + F_{n+1}^2 \\
= F_{n+1} (F_n + F_{n+1}) \\
= F_{n+1} F_{n+2}
\]

which shows that the formula holds for subscript \(n+1 \). //

Example of the Strong Induction Principle at work:

Theorem Every \(n \geq 2 \) is a product of prime numbers.

Proof (Let \(T \) be the set of numbers \(x \) for which \(x+1 \) is a product of prime numbers; we will show by Strong Induction that \(T = \mathbb{N} \).) The case \(x = 1 \) is clear, since 2 is a prime number itself. Next, suppose the theorem is true for all \(x \) with \(1 \leq x \leq n \). If \(n+1 \) is a prime number, then we’re done. (Why?) Otherwise, it factors: \(n+1 = ab \) where \(2 \leq a, b \leq n \). By our (strong) induction hypothesis, both numbers \(a \) and \(b \) are products of prime numbers, so their product is as well. This completes the proof. //

Example of the Well-Ordering Principle at work:

Theorem \(\sqrt{2} \) is irrational.

Proof If \(\sqrt{2} \) is rational, then the set

\[
U = \{ q \in \mathbb{N} | \sqrt{2} = \frac{p}{q} \text{ for some } p \in \mathbb{N} \}
\]

is nonempty. By the Well-Ordering Principle, it has a
least element, which we label b. So there is some $a \in \mathbb{N}$ for which $\sqrt{2} = \frac{a}{b}$. Since $1 < \sqrt{2} < 2$, we can write

$$1 < \frac{a}{b} < 2 \quad \Rightarrow \quad b < a < 2b \quad \Rightarrow \quad 0 < a - b < b .$$

But then

$$2 = \frac{a^2}{b^2} \quad b^2 = \frac{a^2}{2b} \quad 2b^2 - ab = a^2 - ab \quad b(2b - a) = a(a - b) \quad \sqrt{2} = \frac{a}{b} = \frac{2b - a}{a - b}$$

showing that $a - b < b$ is an element of U, contradicting the minimality of b. It follows that $\sqrt{2}$ cannot be rational. //