Arithmetic Functions

Any real-valued function on the integers \(f: \mathbb{N} \to \mathbb{R} \) (or complex-valued function \(f: \mathbb{N} \to \mathbb{C} \)) is called an arithmetic function.

Examples: \(\tau(n) = \) number of divisors of \(n \); \(\varphi(n) = \) number of invertible congruence classes mod \(n \).

The most important arithmetic functions in number theory are the multiplicative functions, those which satisfy \((m, n) = 1 \Rightarrow f(mn) = f(m)f(n) \).

Indeed, there are some very simple multiplicative functions.

Examples: The functions \(i(n) = n \) and \(u(n) = 1 \) are multiplicative, as is the indicator function, defined as

\[
I(n) = \begin{cases}
1 & \text{if } n = 1 \\
0 & \text{if } n > 1
\end{cases}
\]

These functions are also totally multiplicative: they satisfy \(f(mn) = f(m)f(n) \) for all \(m \) and \(n \).

Multiplicative functions have some nice properties. Chief among them is the following
Theorem If \(f(n) \) is multiplicative, then so is its summation function \(F(n) = \sum_{d|n} f(d) \).

Proof If \((m,n) = 1\), every divisor of \(mn\) has the form \(ab\) where \(a|m\) and \(b|n\), and necessarily, \((a,b) = 1\). Conversely, if \(a|m\) and \(b|n\), then \(ab|mn\) (and necessarily, \((a,b) = 1\)). Therefore, if \(f\) is multiplicative,

\[
F(n) = \sum_{d|mn} f(d) \\
= \sum_{a|m} \sum_{b|n} f(ab) \\
= \sum_{a|m} f(a) \sum_{b|n} f(b) \\
= F(m)F(n)
\]

so \(F \) is multiplicative as well. //

Corollary \(\tau \) is multiplicative.

Proof \(\tau(n) \) is the summation function \(\sum_{d|n} u(d) \). //

Corollary \(\sigma(n) = (\text{sum of the divisors of } n) \) is multiplicative.

Proof \(\sigma(n) \) is the summation function \(\sum_{d|n} i(d) \). //
A consequence of the fact that τ and σ are multiplicative functions is that we can provide product formulas for them based on prime factorizations:

Theorem Suppose $n = \prod_{i=1}^{r} p_i^{e_i}$ is the prime factorization of n. Then

$$
\tau(n) = \prod_{i=1}^{r} (e_i + 1) \quad \text{and} \quad \sigma(n) = \prod_{i=1}^{r} \frac{p_i^{e_i+1} - 1}{p_i - 1}.
$$

Proof If p is prime, then the factors of p^e are the numbers $1, p, p^2, \ldots, p^e$. Thus, $\tau(p^e) = e + 1$ and

$$
\sigma(p^e) = 1 + p + p^2 + \cdots + p^e = \frac{p^{e+1} - 1}{p - 1}.
$$

The theorem now follows from the multiplicativity of the functions. //

Not only is the summation function of a multiplicative function also multiplicative, but the converse of this is also true. This fact was proved by August Möbius, a protegé of Gauss, in the 1830s.
In the process Möbius defined a new arithmetic function that played an important role in the proof, the Möbius function

\[
\mu(n) = \begin{cases}
1 & \text{if } n = 1 \\
0 & \text{if } n \text{ is not square-free} \\
(-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes}
\end{cases}
\]

Proposition \(\mu \) is multiplicative. //

Proposition The summation function of the Möbius function is the indicator function:

\[
\sum_{d \mid n} \mu(d) = I(n)
\]

Proof The case \(n = 1 \) is clear. Suppose then that \(n \) is a prime power: \(n = p^e \). Then

\[
\sum_{d \mid n} \mu(d) = \mu(1) + \mu(p) + \mu(p^2) + \cdots + \mu(p^e)
\]

\[
= 1 - 1 + 0 + \cdots + 0
\]

\[
= 0
\]

Since \(\mu \) is multiplicative, so is its summation function, and the result follows. //
Johann Peter Gustav Lejeune Dirichlet, a contemporary of Möbius, devised an “arithmetic of functions” that preserved the property of being multiplicative. If \(f \) and \(g \) are arithmetic functions, their **Dirichlet product** (also called their **convolution**) is defined as

\[
(f \ast g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right).
\]

Proposition If \(f \) and \(g \) are arithmetic functions,

1. \(f \ast g = g \ast f \) [Dirichlet product is commutative];
2. \((f \ast g) \ast h = f \ast (g \ast h) \) [and associative];
3. \(f \ast I = f \) [with \(I \) as identity object]; and
4. \(F = f \ast u \) is the summation function of \(f \).

Proof Easy. //

Theorem If \(f \) and \(g \) are multiplicative functions, then so is \(h = f \ast g \).

Proof Suppose \((m,n) = 1\). Then

\[
h(mn) = \sum_{d \mid mn} f(d)g\left(\frac{mn}{d}\right).
\]
Since \((m,n) = 1\), every divisor \(d\) of \(mn\) can be represented uniquely as a product \(ab\) where \(a \mid m\) and \(b \mid n\). In fact, \((a,b) = 1\) because \((m,n) = 1\). So

\[
h(mn) = \sum_{a \mid m, b \mid n} f(ab)g\left(\frac{mn}{ab}\right)
\]

\[
= \sum_{a \mid m} \sum_{b \mid n} f(ab)g\left(\frac{mn}{ab}\right)
\]

\[
= \sum_{a \mid m} \sum_{b \mid n} f(a)f(b)g\left(\frac{m}{a}\right)g\left(\frac{n}{b}\right)
\]

where we are using the fact that \(f\) and \(g\) are multiplicative. Since the inner sum depends only the choice of \(b\), we may write

\[
h(mn) = \sum_{a \mid m} f(a)g\left(\frac{m}{a}\right)\left(\sum_{b \mid n} f(b)g\left(\frac{n}{b}\right)\right)
\]

\[
= \sum_{a \mid m} f(a)g\left(\frac{m}{a}\right)h(n)
\]

\[
= h(n) \cdot \sum_{a \mid m} f(a)g\left(\frac{m}{a}\right)
\]

\[
= h(n) \cdot h(m)
\]

and the proof is complete. //

The converse of this theorem is also true:
Theorem If \(h = f \ast g \), and \(g \) and \(h \) are nonzero multiplicative functions, then \(f \) must also be multiplicative.

Proof If \(f \) were not multiplicative, then there would have to be some pair of relatively prime integers \(m \) and \(n \) so that \(f(mn) \neq f(m)f(n) \). Since \(g \) and \(h \) are nonzero multiplicative functions, then \(g(1) = h(1) = 1 \). But since \(h(1) = f(1)g(1) \), it follows that \(f(1) = 1 \). In particular, then, \(mn > 1 \). As in the proof of the previous theorem, we can represent each divisor \(d \) of \(mn \) as a product \(ab \) of a factor \(a \) of \(m \) with a factor \(b \) of \(n \), noting that \(a \) and \(b \) are relatively prime since \(m \) and \(n \) are. Thus,

\[
\begin{align*}
 h(mn) &= \sum_{d \mid mn} g(mn)f\left(\frac{mn}{d} \right) \\
 &= g(1)f(mn) + \sum_{d \mid mn, d > 1} g(mn)f\left(\frac{mn}{d} \right) \\
 &= f(mn) + \sum_{a \mid m, b \mid n \atop a, b > 1} g(a)g(b)\left(\frac{m}{a} \right)f\left(\frac{n}{b} \right) \\
 &= f(mn) - f(m)f(n) + \sum_{a \mid m, b \mid n} g(a)g(b)\left(\frac{m}{a} \right)f\left(\frac{n}{b} \right) \\
 &= f(mn) - f(m)f(n) + \sum_{a \mid m} g(a)\left(\frac{m}{a} \right) \cdot \sum_{b \mid n} g(b)f\left(\frac{n}{b} \right) \\
 &= f(mn) - f(m)f(n) + h(m)h(n).
\end{align*}
\]
It follows from this that since \(f(mn) \neq f(m)f(n) \), we must have \(h(mn) \neq h(m)h(n) \) as well, contradicting the fact that \(h \) is multiplicative. //

Corollary If \(f \) is an arithmetic function whose summation function \(F(n) = \sum_{d|n} f(d) \) is multiplicative, then \(f \) must be multiplicative also.

Proof \(F = f \ast u \), so if \(F \) is multiplicative, then \(f \) must be as well, for we know that \(u \) is. //

The properties of the Dirichlet product appear to suggest that it is a group operation on multiplicative functions. This is in fact the case.

Proposition Any arithmetic function \(f \) for which \(f(1) \neq 0 \) has a unique **Dirichlet inverse** \(f^{-1} \). In other words, there exists another arithmetic function \(g = f^{-1} \) so that \(f \ast g = I \).

Proof Define \(g \) so that \(g(1) = 1/f(1) \) and for \(n > 1 \),

\[
g(n) = -\frac{1}{f(1)} \cdot \sum_{d|n, d>1} f(d)g\left(\frac{n}{d}\right).
\]

Then \((f \ast g)(1) = f(1)g(1) = 1 \), and if \(n > 1 \),
\[(f * g)(n) = f(1)g(n) + \sum_{d|n, d>1} f(d)g\left(\frac{n}{d}\right) = f(1)g(n) - f(1)g(n) = 0\]

so \(f * g = I\). The proof of the uniqueness is left as an exercise. //

Since any nonzero multiplicative function \(f\) must satisfy \(f(1) = 1 \neq 0\), all nonzero multiplicative functions have Dirichlet inverses.

Proposition The Dirichlet inverse of a nonzero multiplicative function is itself a nonzero multiplicative function.

Proof \(f * f^{-1} = I\), and \(f\) and \(I\) are multiplicative, so \(f^{-1}\) must be as multiplicative well. Further, if \(f^{-1}\) were the zero function, \(I(1) = (f * f^{-1})(1) = f(1)f^{-1}(1) = 1 \cdot 0 = 0\), which is impossible, so \(f^{-1}\) must be nonzero. //

The Möbius function plays an important role in the structure of these functions, by relating arithmetic functions with their associated summation functions.
The Möbius Inversion Formula Let \(f \) be any arithmetic function and let \(F(n) = \sum_{d|n} f(d) = (f * u)(n) \) be its summation function. Then
\[
f(n) = (\mu * F)(n) = \sum_{d|n} \mu(d) \cdot F\left(\frac{n}{d}\right) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \cdot F(d).
\]

Proof We proved above that \(\sum_{d|n} \mu(d) = I(n) \). This is equivalent to stating that \(\mu * u = I \). Therefore,
\[
F = f * u \Rightarrow \\
\mu * F = \mu * (f * u) = (f * u) * \mu = f * (u * \mu) = f * I = f.
\]
The final equality of the two summations is immediate, for as \(d \) runs through the set of divisors of \(n \), so does \(n/d \).

Since summation has the characteristic properties of integration, we may view “convolution with \(\mu \)” as an analogue of differentiation!