Generalizing the Fundamental Theorem of Algebra: Lagrange’s Theorem

Recall

The Fundamental Theorem of Algebra If \(f(x) \) is a polynomial of degree \(n \) with complex coefficients, then \(f(x) \) has \(n \) complex roots.

It is most often utilized in this alternate form:

FTAlg If \(f(x) \) is a polynomial of degree \(n \) with real coefficients, then \(f(x) \) has at most \(n \) real roots.

Notice that in both cases, we are considering polynomials whose coefficients are drawn from a field (either \(\mathbb{C} \) or \(\mathbb{R} \)). We have seen that \(\mathbb{Z}_p \), the set of congruence classes modulo a prime \(p \), also forms a field. So does the Fundamental Theorem of Algebra hold in this setting?

Example: \(x^2 \equiv 1 \pmod{7} \). We have seen that this congruence must have exactly two solutions, \(x \equiv \pm 1 \pmod{7} \).

Example: \(x^2 \equiv -1 \pmod{7} \). By testing the possibilities \(x \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7} \), we find that this congruence has no solutions.
Example: \(x^2 + 3x + 4 \equiv 0 \pmod{7} \). Even though we are engaged in \(\text{mod} \ 7 \) arithmetic, rather than real number arithmetic, we can still approach the solution of this congruence by means of the quadratic formula,

\[
x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \pmod{7}
\]

(provided we interpret the division in the formula above as \textit{multiplication by the inverse mod} \(7\) of 2), or what is the same, the values of \(x\) that solve the original congruence are solutions to the linear congruence

\[
2x = -3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 4} \pmod{7}.
\]

Of course, there is still the significant matter of what it means to compute a square root mod 7. Note that since the discriminant

\[
\Delta = 3^2 - 4 \cdot 1 \cdot 4 \equiv 0 \pmod{7},
\]

our original congruence has only one solution, corresponding to the solution of the linear congruence \(2 \cdot 1x + 3 \equiv 0 \pmod{7}\). That is, \(x \equiv 2 \pmod{7}\).
Lagrange's Theorem If $f(x)$ is a polynomial of degree n with integer coefficients so that at least one coefficient is not divisible by the prime p, then $f(x) \equiv 0 \pmod{p}$ has at most n roots modulo p.

Proof By Strong Induction on n:

Base case: When $n = 1$, we have a linear congruence of the form $ax \equiv b \pmod{p}$. So either $(a, p) = 1$ and there is one solution to the congruence, or $(a, p) = p$, whence $p \mid b$, and there are no solutions mod p.

Induction step: Assume that the theorem holds for polynomials of degree less than some fixed n; suppose that $f(x)$ is a polynomial of degree exactly n. If $f(x)$ has no roots mod p, then the theorem holds, so we can assume that there is at least one root: $x \equiv a \pmod{p}$. Division of $f(x)$ by $x - a$ produces a quotient polynomial $q(x)$ and a remainder, which must have degree smaller than 1, hence is itself an integer r. That is, $f(x) = (x - a) \cdot q(x) + r$. But since $f(a) \equiv 0 \pmod{p}$, we must have that $r \equiv 0 \pmod{p}$. Therefore, $f(x) \equiv (x - a) \cdot q(x) \pmod{p}$. Now if $x \equiv b \pmod{p}$ is a different root of $f(x)$, then

$$0 \equiv f(b) \equiv (b - a) \cdot q(b) \pmod{p},$$
and since $b \neq a \pmod{p}$, we can cancel the factor $(b - a)$ above, proving that b is a root of $q(x)$ as well. However, $q(x)$ has degree less than n and has at least one coefficient not divisible by p (else all the coefficients of $f(x)$ are divisible by p), so the induction hypothesis applies to $q(x)$, allowing us to conclude that $q(x)$ has at most $n - 1$ distinct roots mod p. Therefore, $f(x) \equiv 0 \pmod{p}$ has at most n distinct roots modulo p. //

It is important to recognize that Lagrange’s Theorem applies only to congruences with prime moduli.

Example: $x^2 \equiv 1 \pmod{8}$ has four solutions $x \equiv 1, 3, 5, 7 \pmod{8}$.

Corollary Suppose p is a prime and $n \mid p - 1$. Then $x^n \equiv 1 \pmod{p}$ has exactly n solutions mod p.

Proof Recall that if $p - 1 = mn$,

$$x^{p-1} - 1 = (x^n - 1)(x^{n(m-1)} + x^{n(m-2)} + \cdots + x^n + 1).$$

Now Lagrange’s Theorem says that the two polynomial factors on the right have at most n and at most $n(m-1)$ roots mod p, respectively — a total
of at most $n + n(m - 1) = p - 1$ roots. But Fermat’s Little Theorem says that the polynomial on the left has exactly $p - 1$ roots mod p. Therefore both factors on the right must have the maximum number of roots possible. In particular, $x^n - 1$ has exactly n roots mod p. //