Cyclic groups

Examples:
• \(\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle \) under +.
• \(\mathbb{Z}_n = \langle 1 \rangle = \langle -1 \rangle \) under + mod \(n \); in fact, there may be other generators of \(\mathbb{Z}_n \) besides \(\pm 1 \).
• \(U(n) \) is sometimes cyclic, e.g., \(n = 2, 3, 4, 6, 7, 9, \ldots \).

Theorem If \(a \in G \) has infinite order, then \(a^i = a^j \)
\(\iff i = j. \) If \(a \in G \) has finite order \(n \), then
\(\langle a \rangle = \{a, a^2, a^3, \ldots, a^n\} \) and \(a^i = a^j \iff n \) divides \(i - j \).

Proof \(a^i = a^j \iff a^{i-j} = e. \) So if \(a \) has infinite order, then, because no positive power of \(a \) equals \(e \), and further, no negative power of \(a \) can equal \(e \) (as if \(a^{-n} = e \) then multiplication by \(a^n \) implies that \(e = a^n \) which is impossible), we must have that
\(a^i = a^j \iff i = j. \)

If \(a \) has finite order \(n \), then the sequence
\(e = a^0, a, a^2, a^3, \ldots, a^{n-1} \) of powers of \(a \) forms a list of distinct group elements (else \(a^i = a^j \) with
\(0 \leq j < i \leq n - 1 \), which implies \(a^{i-j} = e \) with
\(0 < i - j < n \), contradicting that \(n \) is the order of \(a \).

If \(k \) is any integer, and dividing \(k \) by \(n \) yields
quotient \(q \) and remainder \(r \) (that is, \(k = qn + r \), with
\(0 \leq r < n \)), then
\(a^k = a^{qn+r} = (a^n)^q a^r = e^q a^r = a^r \), so
\(\langle a \rangle = \{a, a^2, a^3, \ldots, a^n\} \). Further, as above,
\(a^i = a^j \iff a^{i-j} = e. \) Dividing \(i - j \) by \(n \) to find a
quotient q and remainder r, we have $i - j = qn + r$ with $0 \leq r < n$ and as before, $e = a^{i-j} = a^{qn+r} = a^r$ which forces $r = 0$, meaning that n divides $i - j$.

Conversely, if n divides $i - j$, then $r = 0$ and so $a^{i-j} = a^{qn+r} = a^r = e$. Thus $a^i = a^j$. //

Corollary $|a| = |\langle a \rangle|$. //

Corollary If $a \in G$ has finite order n and $a^k = e$ then n divides k.

Proof Take $i = k$ and $j = 0$ above. //

Notice that any cyclic group $\langle a \rangle$ appears to have a structure identical to either \mathbb{Z} (if a has infinite order), or \mathbb{Z}_n (if a has finite order).

Theorem If $a \in G$ has finite order n, then $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$.

Proof Put $d = \gcd(n,k)$; then there are integers r,s and t so that $k = dr$ and $d = ns + kt$ (see p. 5). So $a^k = (a^d)^r$, which implies that $\langle a^k \rangle \subseteq \langle a^d \rangle$, and $a^d = a^{ns+kt} = (a^n)^s (a^k)^t = e^s (a^k)^t = (a^k)^t$, which implies that $\langle a^d \rangle \subseteq \langle a^k \rangle$. So $\langle a^k \rangle = \langle a^d \rangle$. //
Next, \(n = du \) for some integer \(u \), whence \((a^d)^u = a^n = e \Rightarrow |a^d| \leq u \). But if \(i < u \), then \(di < du = n \), so \((a^d)^i \neq e \Rightarrow |a^d| \neq u \). Therefore, \(|a^d| = u \).

But \(d = \gcd(n,k) \) and \(u = n/\gcd(n,k) \), so the theorem is proved. //

Corollary If \(a \in G \) has finite order \(n \), then \(\langle a^i \rangle = \langle a^j \rangle \iff \gcd(n,i) = \gcd(n,j) \).

Proof By virtue of the theorem, \(\langle a^i \rangle = \langle a^j \rangle \iff \langle a^{\gcd(n,i)} \rangle = \langle a^{\gcd(n,j)} \rangle \). Certainly, \(\gcd(n,i) = \gcd(n,j) \)

\[\Rightarrow \langle a^{\gcd(n,i)} \rangle = \langle a^{\gcd(n,j)} \rangle. \]

But \(\langle a^{\gcd(n,i)} \rangle = \langle a^{\gcd(n,j)} \rangle \Rightarrow |a^{\gcd(n,i)}| = |a^{\gcd(n,j)}| \Rightarrow n/\gcd(n,i) = n/\gcd(n,j) \) by the theorem \(\Rightarrow \gcd(n,i) = \gcd(n,j) \). //

Corollary Suppose \(G = \langle a \rangle \) is a cyclic group of order \(n \). Then \(G = \langle a^k \rangle \iff \gcd(n,k) = 1 \). //

Corollary The integer \(k \in \mathbb{Z}_n \) generates \(\mathbb{Z}_n \) if and only if \(\gcd(n,k) = 1 \). //
We can now describe the complete structure of a cyclic group.

The Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group \(G = \langle a \rangle \) is cyclic. Moreover, if \(|\langle a \rangle| = n \), then the only subgroups of \(\langle a \rangle \) have order \(k \), one for each divisor \(k \) of \(n \), namely the subgroup \(\langle a^{n/k} \rangle \).

Proof The case of the trivial subgroup of \(G \) is, well, trivial: it is certainly cyclic. Let \(H \) then be a nontrivial subgroup of \(G \). So \(H \) contains some nonidentity element \(a^m \) of \(G \), that is, \(m \neq 0 \). Since the inverse \(a^{-m} \) of \(a^m \) is also in \(H \), we may assume that \(m \) is positive. Indeed, for convenience we can also assume that \(m \) is the exponent of the smallest positive power of \(a \) that lies in \(H \).

If \(a^k \) is any other element of \(H \), we write \(k = qm + r \), with \(0 \leq r < m \) (dividing \(k \) by \(m \)), so that \(r = k - qm \); then \(a^r = a^k a^{-qm} = a^k (a^m)^{-q} \in H \). But \(m \) is the exponent of the smallest positive power of \(a \) that lies in \(H \), so \(r \) must be 0. That is, \(m \) divides \(k \). This shows that \(H = \langle a^m \rangle \) and that every subgroup of \(G \) must be cyclic.

If in addition, \(G \) has order \(n \), then taking \(k = n \) in the paragraph above, we see that \(m \), the order of \(H \), must divide \(n \).
Finally, by the last theorem, if k is a divisor of n, we know that the subgroup $H = \langle a^{n/k} \rangle$ has order

$$|a^{n/k}| = n/\gcd(n,n/k) = n/(n/k) = k.$$

And conversely, if H has order k, then from above, we know that $H = \langle a^m \rangle$ where m is a divisor of n. Also $k = |a^m| = n/\gcd(n,m) = n/m$, so $m = n/k$ and $H = \langle a^{n/k} \rangle$.

Corollary For each positive divisor k of n, $\langle n/k \rangle$ is the unique subgroup of \mathbb{Z}_n of order k. Moreover, these are the only subgroups of \mathbb{Z}_n.

By combining the last two theorems, we can determine the count of the elements of a given order in a cyclic group.

Theorem If d is a divisor of n, then the number of elements of order d in a cyclic group of order n is

$$\phi(d) = \# \text{(positive integers less than } d \text{ and prime to } d)$$

(This defines the **Euler phi function**).

Proof There is just one (cyclic) subgroup $\langle b \rangle$ of order d in a cyclic group $\langle a \rangle$ of order n, so all
elements of order d in $\langle a \rangle$ generate this same subgroup $\langle b \rangle$. These elements are all powers of b, but we also know that $\langle b^k \rangle = \langle b \rangle \iff \gcd(d,k) = 1$. So there are exactly $\phi(d)$ such generators. //

Corollary In any finite group, the number of elements of order d is divisible by $\phi(d)$.

Proof If there are no elements of order d, then the statement is true as $\phi(d)$ divides 0. So suppose there is an element a of order d. By the theorem, $\langle a \rangle$ has $\phi(d)$ elements of order d, so if all the elements of order d in the full group lie in $\langle a \rangle$, the proof is complete. If not, then there is another element b of order d not in $\langle a \rangle$. But then $\langle b \rangle$ contains $\phi(d)$ elements of order d by the same argument, and none of these can be common to both $\langle a \rangle$ and $\langle b \rangle$, for if c were one such element, then we would have $\langle a \rangle = \langle c \rangle = \langle b \rangle$, forcing $b \in \langle a \rangle$, a contradiction. Continuing this way, we see that the number of elements of order d is a multiple of $\phi(d)$. //

We can show the structure of the subgroups of a group is via a **subgroup lattice**, a diagram that depicts all the subgroups connected to each other with segments so that smaller subgroups appear below the subgroups that contain them.