Practical aspects of backward bifurcation in a mathematical model for tuberculosis

David Gerberry
Xavier University
www.cs.xavier.edu/~david.gerberry
david.gerberry@xavier.edu

Ohio University
Mathematical Biology Seminar
April 18, 2017
Outline

• Basics on tuberculosis and BCG vaccine
• Model description
• Original motivation for model and conclusions
• Backward bifurcation
 – Analytic thresholds for existence
 – Practical considerations
Tuberculosis Basics

- Approximately 1/3 of the world’s current population has LTBI
- Exogenous reinfection
- Recovered individuals are susceptible to future infection
Bacille Calmette-Guérin (BCG) Vaccine

- Old, inexpensive, safe and well-tolerated
Bacille Calmette-Guérin (BCG) Vaccine

- Old, inexpensive, safe and well-tolerated

- Highly variable efficacy
 - repeated studies in the UK → (60-80%)
 - UK study from 1956-1963 → (84%)
 - Georgia/Alabama study in 1966 → (14%)
 - India in 1979 → (0%)
 - Meta-analysis in 2000 → (71-83%)
Bacille Calmette-Guérin (BCG) Vaccine

• Old, inexpensive, safe and well-tolerated

• Highly variable efficacy
 – repeated studies in the UK → (60-80%)
 – UK study from 1956-1963 → (84%)
 – Georgia/Alabama study in 1966 → (14%)
 – India in 1979 → (0%)
 – Meta-analysis in 2000 → (71-83%)

• Protective efficacy wanes with time (10-55 years of protection)
Bacille Calmette-Guérin (BCG) Vaccine

- Old, inexpensive, safe and well-tolerated

- Highly variable efficacy
 - repeated studies in the UK → (60-80%)
 - UK study from 1956-1963 → (84%)
 - Georgia/Alabama study in 1966 → (14%)
 - India in 1979 → (0%)
 - Meta-analysis in 2000 → (71-83%)

- Protective efficacy wanes with time (10-55 years of protection)

- Can interfere with the detection of Latent TB
TB Model

\(S = \text{susceptible} \)

\(V = \text{vaccinated} \)

\(E = \text{latently infected} \)

\(E_V = \text{vacc. & latently infected} \)

\(I_T = \text{actively infected \& treated} \)

\(I_{Tc} = \text{actively infected \& untreated} \)

\(R = \text{recovered} \)

\(c = \text{vaccine coverage} \)

\(p = \text{prob. of fast progression} \ (\approx .05) \)

\(d = \text{detection rate (active TB)} \)

\(s = \text{treatment success rate} \)

\(r = \text{detection/treatment success rate (latent TB)} \)

\(p^* = \text{proportion vaccinated} \)

\(1-p^* = \text{proportion unvaccinated} \)

\(c \) recruitment into the population

\(1-c \) exogenous reinfection

\(p \) fast progression

\(1-p \) slow progression

\(c \) vaccine waning

\(1-c \) infection

\(1-p \) infection*
TB Model

\(q_1 = \) efficacy preventing initial infection
\(q_2 = \) efficacy preventing fast progression
\(q_3 = \) efficacy preventing slow progression

\(0 \leq q_1, q_2, q_3 \leq 1 \)

\(\theta_1 = \) factor of susceptibility to exogenous reinfection
\(\theta_2 = \) factor of susceptibility to reinfection after recovery
TB Model

\(q_1 = \text{efficacy preventing initial infection} \)
\(q_2 = \text{efficacy preventing fast progression} \)
\(q_3 = \text{efficacy preventing slow progression} \)

\[0 \leq q_1, q_2, q_3 \leq 1 \]

\(\theta_1 = \text{factor of susceptibility to exogenous reinfection} \)
\(\theta_2 = \text{factor of susceptibility to reinfection after recovery} \)

Reinfection parameters (ranges from the literature):

- \(\theta_1 \): factor of susceptibility to exogenous reinfection

 \((0, 1), (0.50 - 0.75), 0.25, 0.80 \)

- \(\theta_2 \): factor of susceptibility to reinfection after recovery

 \(4, 1, 0.80, 1.20 \)

\[0 \leq \theta_1 \leq 1 \quad 0 \leq \theta_2 \leq 5 \]
The Model

\[S' = (1 - c)\pi + \omega V - \beta SI - \mu S \]
\[V' = c\pi - \omega V - (1 - q_1)\beta VI - \mu V \]
\[E' = (1 - p)\beta SI - (\nu E + \theta_1 p \beta EI) - \mu E, \]
\[E_V' = [1 - p(1 - q_2)](1 - q_1)\beta VI + (1 - p)\theta_2 \beta RI \]
\[- [(1 - q_3)\nu E_V + \theta_1 p \beta E_V I] - \mu E_V \]
\[I_T' = d[((1 - r)\nu E + \theta_1 p \beta EI) + p\beta SI + p(1 - q_2)(1 - q_1)\beta VI \]
\[+ (1 - q_3)\nu E_V + \theta_1 p \beta E_V I + p\theta_2 \beta RI] - \gamma_1 I_T - \mu I_T + \frac{d}{2} I_{Tc}, \]
\[I_{Tc}' = (1 - d)[((1 - r)\nu E + \theta_1 p \beta EI) + p\beta SI + p(1 - q_2)(1 - q_1)\beta VI \]
\[+ (1 - q_3)\nu E_V + \theta_1 p \beta E_V I + p\theta_2 \beta RI] + (1 - s)\gamma_1 I_T - \gamma_2 I_{Tc} \]
\[- (\mu + \mu_T)I_{Tc} - d/2 I_{Tc} \]
\[R' = s\gamma_1 I_T + \gamma_2 I_{Tc} + r\nu E - \theta_2 \beta RI - \mu R \]
Original motivation for the model

Can we establish conditions which justify the discontinuation of mass BCG vaccination?
Original motivation for the model

- treating LTBI
- BCG efficacy

Don’t Vaccinate

- treating LTBI
- BCG efficacy

Vaccinate

Can we establish conditions which justify the discontinuation of mass BCG vaccination?

- Very unlikely that LTBI treatment would outperform mass vaccination
Can we establish conditions which justify the discontinuation of mass BCG vaccination?

- Very unlikely that LTBI treatment would outperform mass vaccination

- WHO TB database to parameterize for 8 countries
- *How much better? & cost-effectiveness*
- LTBI treatment *never* outperforms mass vaccination
- Vaccination is up to 100 times more cost-effective in high prevalence countries
Why look at backward bifurcation?

- Characteristics linked to backward bifurcation in mathematical models
 - Vaccination (imperfect protection, waning, incomplete coverage)
 - Partial immunity and reinfection
 - Limited treatment resources
 ★ All central characteristics of TB epidemiology
 ★ Examine the effect of vaccine efficacy, detecting and treating LTBI

- New diagnostic tests for LTBI: interferon-gamma release assays (IGRA)
 - More accurate than skin testing ➞ more treatment of LTBI
 - Not confounded by BCG vaccination ➞ more vaccination
 ★ Potential to push TB towards eradication
Backward bifurcation

\(R_0 \): average number of secondary infections caused by a single infection in a completely susceptible population

- \(R_0 < 1 \) \(\Rightarrow \) disease goes extinct
- \(R_0 > 1 \) \(\Rightarrow \) disease will persist
Backward bifurcation

\[R_0 : \] average number of secondary infections caused by a single infection in a completely susceptible population

- \(R_0 < 1 \) \(\Rightarrow \) disease goes extinct
- \(R_0 > 1 \) \(\Rightarrow \) disease will persist

Forward (supercritical) bifurcation

- \(R_0 > 1 \) \(\Rightarrow \) disease will persist
- \(R_0 < 1 \) \(\Rightarrow \) disease goes extinct

- Very low endemic prevalence if \(R_0 \) is slightly greater than 1.
Backward bifurcation

\(R_0 : \) average number of secondary infections caused by a single infection in a completely susceptible population

\(R_0 < 1 \) ⇒ disease goes extinct
\(R_0 > 1 \) ⇒ disease will persist

- Very low endemic prevalence if \(R_0 \) is slightly greater than 1.

Forward (supercritical) bifurcation

\(R_0 > 1 \) ⇒ disease will persist
\(R_0 < 1 \) ⇒ disease goes extinct

- To eliminate the disease, \(R_0 \) must be reduced to less than \(R_0^* \).
- High endemic prevalence if \(R_0 \) is slightly greater than 1.

Backward (subcritical) bifurcation

\(R_0 > 1 \) ⇒ disease will persist
\(R_0 < 1 \) it depends

- To eliminate the disease, \(R_0 \) must be reduced to less than \(R_0^* \).
How can backward bifurcation happen?

• Completely susceptible population *usually* provides maximum infectious potential.

• In general, backward bifurcation is possible in structured populations when “the depletion of the uninfected pool is counteracted by a change in the structure of the population that favors the disease.” — Dushoff *et al.* *JMB* (1998)

• For TB:
 • Exogenous re-infection means latent class can still be infected.
 • Recovered individuals can also be infected and may be as much as *4 times more* susceptible to TB than TB-naïve.
Outline for rest of talk

• Analytic backward bifurcation results for simplified models
 – Model A:
 • no treatment of active TB, universal vaccination, no waning of vaccine protection
 • role of vaccine efficacies on existence of backward bifurcation
 – Model B:
 • no treatment of active TB, no vaccine protection against reactivation of LTBI
 • role of detection/treatment of LTBI on existence of backward bifurcation

• Numerical backward bifurcation results for the full model
 – Compare to results for Models A and B

• Practical aspects; magnitude of the backward bifurcation
Omit treatment of Active TB, retain average sojourn time

- Consider system which does not explicitly include treatment of Active TB
 - BB is local behavior near DFE

- Retain connection to country-specific treatment data via average sojourn time

\[
D = \frac{1}{\gamma + \mu + \mu_T} = \frac{\gamma_1 - \gamma_1 ds + \mu + d\gamma_2 + d/2 + d\mu_T}{(\mu + \mu_T + \gamma_2 + ds/2)\gamma_1 + \mu(d/2 + \mu + \mu_T + \gamma_2)}
\]
How to prove backward bifurcation

✧ Idea: Transform to a simple system that has the same bifurcation

1. Rewrite our system as $\frac{dx}{dt} = f(x, \beta)$.

2. Linearize around the DFE at $R_0 = 1$.

 \[J = D_x f(x^*, \beta^*) = \left(\frac{\partial f_i}{\partial x_j} (x^*, \beta^*) \right), \]

 WLOG assume $x^* = \beta^* = 0$.

 Zero is a simple eigenvalue of J with right and left eigenvectors w and v, respectively, and all other eigenvalues have negative real parts.

3. Center Manifold Theorem.

 \[W^c = \{ c(t)w + h(c, \beta) : c < \delta, c(0) = 0, h(c, \beta) = Dh(c, \beta) = 0 \} \]

 where $c(t) \in \mathcal{E}^c$ and $h(c, \beta) \in \mathcal{E}^s$. Only need to consider dynamics on W^c.

4. Center manifold is invariant under the dynamics of $\frac{dx}{dt} = f(x, \beta)$, so we have that $\frac{d}{dt} (c(t)w + h(c, \beta)) = f(c(t)w + h(c, \beta), \beta)$.

 Taylor expansion for $h(c, \beta)$

5. Simplified system

 \[\frac{dc}{dt} = \frac{a}{2} c^2 + b\beta c, \text{ where } a = \sum_{k,i,j=1}^{n} v_k w_i w_j \frac{\partial^2 f_k}{\partial x_i \partial x_j}, \quad b = \sum_{k,i=1}^{n} v_k w_i \frac{\partial^2 f_k}{\partial x_i \partial \phi}. \]
How to prove backward bifurcation

$b > 0$ for biological reasons
(need $c = 0$ stable for $R_0 < 1$ and unstable for $R_0 > 1$)

$$\frac{dc}{dt} = \frac{a}{2}c^2 + b\beta c = c \left(\frac{a}{2} + b\beta c\right) = 0$$

$$\implies c = 0, \quad c = \frac{a}{-2b\beta} \quad \text{are equilibria}$$

$a < 0 \implies \text{forward bifurcation}$

$a > 0 \implies \text{backward bifurcation}$
Backward bifurcation – Model A

Theorem 1 (Model A) The reduced system with no treatment of active TB, universal vaccination and no waning of vaccine protection (i.e. \(d = \omega = 0, c = 1 \)) has a backward bifurcation at \(\beta = \beta^* \) (i.e. \(R_0 = 1 \)) if and only if

\[
(1 - q_1)^2 [\nu(1 - q_3) + \mu] [p\mu(1 - q_2) + \nu(1 - q_3)] \beta^* V^*
\]

\[
< \mu^2 p(1 - q_1)[1 - p(1 - q_2)] \beta^* V^* \theta_1 + \gamma[\nu(1 - q_3) + \mu] [p\mu + \nu(1 - q_3)] \theta_2,
\]

where

\[
V^* = \frac{\pi}{\mu} \quad \text{and} \quad \beta^* = \frac{\mu(\mu + \gamma + \mu_T)(\nu(1 - q_3) + \mu)}{\pi(1 - q_1)[\nu(1 - q_3) + p\mu(1 - q_2)]}.
\]

• Effect of increased vaccine efficacy on backward bifurcation

\[
\frac{d\theta_2}{dq_1} = -\frac{(\mu + \gamma + \mu_T)(\nu(1 - q_3) + \mu)}{\gamma [p\mu + \nu(1 - q_3)]} < 0 \quad \frac{d\theta_2}{dq_2} = -\frac{p^2 \mu^2 (\mu + \gamma + \mu_T)(\nu(1 - q_3) + \mu)}{\gamma [p\mu + \nu(1 - q_3)][p\mu(1 - q_2) + \nu(1 - q_3)]^2} \theta_1 < 0
\]

\[
\frac{d\theta_2}{dq_3} = \frac{\nu \mu (1 - q_1)(1 - p)(\mu + \gamma + \mu_T)}{\gamma (p\mu + \nu - \nu q_3)^2} - \frac{2p\mu^2 \nu(\mu + \gamma + \mu_T)(1 - p(1 - q_2)) [p\mu(1 - \frac{q_2}{2}) + \nu(1 - q_3)]}{\gamma ([p\mu + \nu(1 - q_3)][p\mu(1 - q_2) + \nu(1 - q_3)])^2} \theta_1
\]
Backward bifurcation thresholds – Model A

- Effect of increased vaccine efficacy on backward bifurcation
 - Against initial infection \rightarrow BB more likely
 - Against fast progression \rightarrow BB more likely
 - Against slow progression \rightarrow BB more likely, unless θ_l is very small

(a) Varying the protection against initial infection, q_1.
(b) Varying the protection against fast progression, q_2.
(c) Varying the protection against exogenous reinfection, q_3.
Theorem 2 (Model B) The reduced system with no treatment of active TB and no vaccine protection against reactivation of LTBI (i.e. $d = q_3 = 0$) has a backward bifurcation at $\beta = \beta^*$ (i.e. $R_0 = 1$) if and only if

\[
(\nu + \mu)(\mu + \omega)(p\mu + \nu r p + \nu(1 - r))\beta^* S^*
\]
\[
+ (\nu + \mu) \left[p(1 - q_1)(1 - q_2)\mu^2 + (\omega p + (1 - q_1)\nu)\mu + \omega \nu(1 - r + rp) \right] (1 - q_1)\beta^* V^*
\]
\[
< \mu p(\mu + \omega)\left[(1 - p)(1 - q_2) \right] (1 - q_1)\beta^* V^* \mu + (1 - p)\beta^* S^* (\mu + \nu r) \theta_1
\]
\[
+ (p\mu + \nu)(\mu + \omega)[\gamma(\nu + \mu) + (1 - p)\beta^* S^* \nu r] \theta_2,
\]

where

\[
S^* = \frac{(1 - c)\mu \pi + \omega \pi}{\mu(\mu + \omega)}, \quad V^* = \frac{c\pi}{\mu + \omega} \quad \text{and}
\]
\[
\beta^* = \frac{\mu(\mu + \gamma + \mu_T)(\mu + \omega)(\nu + \mu)}{\pi(\mu + \omega)[(1 - r + rp)\nu + p\mu] + \mu \pi c[(\mu pq_2 - p\mu - \nu)q_1 - \mu pq_2 + r \nu (1 - p)]},
\]
Backward bifurcation thresholds – Model B

\[
\frac{d\theta_2}{dr} = -\frac{(\mu + \mu_T + \gamma)^2 \nu(\nu + \mu)(1-p)}{[\nu r \mu(1-p)+\gamma(\mu p + \nu)+\nu \mu_T r(1-p)]^2} - \frac{\nu r \mu (1-p) (\mu + \mu_T + \gamma) [\gamma (\nu + \mu p) - \mu (1-p) (\mu + \mu_T)]}{(p \mu + \nu) [\nu r \mu (1-p) + \gamma (\mu p + \nu) + \nu \mu_T r(1-p)]^2} \quad \theta_1 < 0
\]

- Effect of increased detection and treatment of Latent TB
 \(\rightarrow \) BB more likely

- Effect of increased vaccine coverage depends on magnitude of \(q_1 \)

 \(q_1 = 0.01 < q_1^* \approx 0.057 \)

 \(q_1 = q_1^* \approx 0.057 \)

 \(q_1 = 0.35 > q_1^* \approx 0.057 \)
“Numerical” backward bifurcation thresholds for the full model

• Center manifold theory \rightarrow BB occurs when

\[a = \sum_{k,i,j=1}^{n} v_k w_i w_j \frac{\partial^2 f_k}{\partial x_i \partial x_j}(x^*, \phi^*) > 0 \]

\[b = \sum_{k,i=1}^{n} v_k w_i \frac{\partial^2 f_k}{\partial x_i \partial \phi}(x^*, \phi^*) > 0 \]

• Use numerical values for all model parameters (except reinfection parameters) \rightarrow nice expressions for a and b \rightarrow mathematically tractable thresholds for BB

Ex; $\theta_2 > -4.325513938\theta_1 + 9.863666263$
Thresholds for full model

\[c = 0.90 \]

\[\frac{1}{\omega} = 55 \]

(a) Varying the vaccine's protection against initial infection, \(q_1 \).

(b) Varying the vaccine's protection against fast progression, \(q_2 \).

(c) Varying the vaccine's protection against exogenous reinfection, \(q_3 \).

(d) Varying the proportion of LTBI that are detected and successfully treated, \(r \).

(e) Varying vaccine coverage, \(c \).

(f) Varying the average duration of the vaccine's protection, \(1/\omega \).
Thresholds for full model

\[
c = 0.90 \quad 1/\omega = 55
\]

(a) Varying the vaccine’s protection against initial infection, \(q_1 \).

(b) Varying the vaccine’s protection against fast progression, \(q_2 \).

(c) Varying the vaccine’s protection against exogenous reinfection, \(q_3 \).

(d) Varying the proportion of LTBI that are detected and successfully treated, \(r \).

(e) Varying vaccine coverage, \(c \).

(f) Varying the average duration of the vaccine’s protection, \(1/\omega \).

Similar to Model B

Similar to Model B
Thresholds for full model

- $c = 0.90$
- $1/\omega = 55$

Not Similar to Model A

(a) Varying the vaccine’s protection against initial infection, q_1.
(b) Varying the vaccine’s protection against fast progression, q_2.
(c) Varying the vaccine’s protection against exogenous reinfection, q_3.

(d) Varying the proportion of LTBI that are detected and successfully treated, r.
(e) Varying vaccine coverage, c.
(f) Varying the average duration of the vaccine’s protection, $1/\omega$.

Model A
- $c = 1$
- $\omega = 0$
Why not similar to Model A?

- Thresholds for different efficacy against initial infection, q_1, are:
 - Very sensitive to duration of vaccine protection
 - Sensitive to vaccine coverage
Why not similar to Model A?

(b) Varying the vaccine’s protection against fast progression, q_2.

- Thresholds for different efficacy against fast progression, q_2 are:
 - Very sensitive to duration of vaccine protection
Why not similar to Model A?

- Thresholds for different efficacy against slow progression, q_3 are:
 - Very sensitive to duration of vaccine protection.
Metrics for magnitude of a backward bifurcation

- R_0^*, the eradication threshold, which specifies the degree to which the reproductive number must be reduced to guarantee disease eradication

- P^*, the endemic disease prevalence at $R_0 = 1$, which specifies the size of the jump discontinuity in endemic prevalence as R_0 crosses 1 from below
Magnitude of backward bifurcation

R_0^*

- (a) Baseline parameters (Table 1).
- (b) Increased detection and treatment of LTBI ($r = 0.65$).
- (c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).

P^*

- (a) Baseline parameters (Table 1).
- (b) Increased detection and treatment of LTBI ($r = 0.65$).
- (c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).
Magnitude of backward bifurcation

\[R_* \]

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).

\[P_* \]

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).
Magnitude of backward bifurcation

R^*_0

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).

P^*

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).
Magnitude of backward bifurcation

R^*_0

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).

P^*

(a) Baseline parameters (Table 1).
(b) Increased detection and treatment of LTBI ($r = 0.65$).
(c) Increased vaccine coverage and no waning of protection ($c = 0.98$, $\omega = 0$).
Conclusions

• Backward bifurcation (BB) is unlikely.
 – Any possible backward bifurcation would be “small”

• BB is *caused* by re-infection, but…
 • Factors which make BB significantly more likely:
 – Increased vaccine coverage with effective vaccine
 – Increased detection and treatment of Latent TB
 ★ Factors with greatest potential to eliminate TB!

• Modeling papers can give the wrong message.
 • Backward bifurcation is *not* an argument against these interventions!
 • Benefits greatly outweigh any possible adverse effect of BB

• Exponentially distributed duration of vaccine protection is important in
 the likelihood of BB
Feng et al., Theor Popul Biol (2000)

• Backward bifurcation can occur for more biologically feasible levels of re-infection

\[\hat{\theta}_1 > 0.30 \text{ assuming } \hat{\theta}_2 = 1 \text{ and } \hat{\mu}_T = 0 \]

• Their assumption
 all exogenous re-infections move directly to the actively infected class

• Current model
 issue of fast/slow progression still applies

\[\hat{\theta}_1 = p\theta_1 = (0.05)\theta_1 \]

Their \(\hat{\theta}_1 = 0.30 \) is equivalent to \(\theta_1 = 6 \) in current model
Can exhibit BB

Can NOT exhibit BB

- recovery and subsequent re-infection after recovery drive backward bifurcation rather than imperfect vaccine
Comparison of mass action and standard incidence formulations

Figure D4: Comparison of thresholds for the existence of backward bifurcation from the full model in (1) and those for a standard incidence version of the full model (thin black lines). Backward bifurcation occurs for points above/to the right of the line. Baseline model parameters from Table 1 are used with two exceptions: $c = 0.90$ and $1/\omega = 55$.
Mean sojourn time from R_0

$$R_0 = \beta(A + B)$$

where

$$A = \frac{\pi [(1-r+rp)\nu+p\mu]}{\mu(\mu+\mu_T+\gamma)(\mu+\nu)}$$

$$B = \frac{c\pi \left[(\mu+\nu)(-p\mu+\mu pq_2+\nu q_3-\nu)q_1+\nu(p-1)(\mu+r\nu)q_3-(\mu+\nu)(\mu pq_2+r\nu(p-1))\right]}{(\mu+\omega)(\mu+\nu)(\mu+\mu_T+\gamma)(\nu-q_3\nu+\mu)}$$

- if all infections immediately become active TB ($p=1$)
- noting that vaccination doesn’t affect mean sojourn time ($c=0$)

$$R_0\big|_{p=1, c=0} = \frac{\beta\pi(\gamma_1 - \gamma_1 ds + \mu + d\gamma_2 + d/2 + d\mu_T)}{\mu[(\mu + \mu_T + \gamma_2 + ds/2)\gamma_1 + \mu(d/2 + \mu + \mu_T + \gamma_2)]}$$
Should everyone be vaccinated with BCG?

[Map showing BCG recommendation types worldwide]

http://www.bcgatlas.org

Zwerling, et al. (2011). PLoS Medicine, 8(3)
Can we establish conditions which justify the discontinuation of mass BCG vaccination?
Original Results

- Unlikely that LTBI treatment would outperform mass vaccination

Even if treating 35% of LTBI, vaccine efficacies have to be very low to justify discontinuation of mass vaccination.
Original Results

- WHO TB database to parameterize for 8 countries
- *How much better? & cost-effectiveness*
- LTBI treatment *never* outperforms mass vaccination

\[q = 1 - (1 - q_1)(1 - q_2)(1 - q_3) \]

horizontal axes: overall protective effect

vertical axes: cumulative proportion of active TB cases prevented over 50 years

\[0.10 < r < 0.40 \]

\[0.00 < r < 0.30 \]
Original Results

- Vaccine is 1-2 orders of magnitude less “cost-effective” in low incidence setting.
- Re-infection (both exogenous and after recovery) is very important in making a vaccination decision.
- The interference of BCG with detecting latent TB is NOT.

Table 1: Vaccinations per case of active TB prevented after 50 years

<table>
<thead>
<tr>
<th>Country</th>
<th>5th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>95th</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1377</td>
<td>2531</td>
<td>4596</td>
<td>7615</td>
<td>14844</td>
</tr>
<tr>
<td>UK</td>
<td>1135</td>
<td>2084</td>
<td>3118</td>
<td>4787</td>
<td>9807</td>
</tr>
<tr>
<td>Germany</td>
<td>1076</td>
<td>1978</td>
<td>2980</td>
<td>4849</td>
<td>10146</td>
</tr>
<tr>
<td>Mexico</td>
<td>97</td>
<td>220</td>
<td>391</td>
<td>691</td>
<td>1383</td>
</tr>
<tr>
<td>India</td>
<td>96</td>
<td>166</td>
<td>249</td>
<td>379</td>
<td>700</td>
</tr>
<tr>
<td>Brazil</td>
<td>13</td>
<td>29</td>
<td>53</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Romania</td>
<td>4</td>
<td>13</td>
<td>30</td>
<td>79</td>
<td>263</td>
</tr>
<tr>
<td>Ghana</td>
<td>6</td>
<td>11</td>
<td>16</td>
<td>23</td>
<td>43</td>
</tr>
</tbody>
</table>