Congruences

One of the important notational devices used by Gauss in his *Disquisitiones Arithmeticae* (1801) was the **congruence**: where a, b, m are integers and m is nonzero,

$$a \equiv b \pmod{m} \iff m \mid (a - b)$$

$\iff a, b$ have the same remainder when divided by m

Here, m is called the **modulus**. The congruence relation is a prototypical example of an equivalence relation:

Proposition Congruence mod m is an equivalence relation (reflexive, symmetric, and transitive). //

At least as important is the fact that congruence mod m is **compatible with arithmetic**.

Proposition If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

1. $a + c \equiv b + d \pmod{m}$;
2. $ac \equiv bd \pmod{m}$;
3. $a^k \equiv b^k \pmod{m}$ for any positive integer k. //

Proposition

1. (Reduction) If $a \equiv b \pmod{m}$ and $n \mid m$, then $a \equiv b \pmod{n}$.
2. (Cancellation) $ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{\frac{m}{(c,m)}}$.
Because congruence mod \(m \) is an equivalence relation, the integers are partitioned into equivalence classes under this relation, called more appropriately **congruence classes** mod \(m \). (Every integer belongs to exactly one congruence class mod \(m \) and no two congruence classes have anything in common.) There are exactly \(m \) congruence classes mod \(m \) and they are determined by the \(m \) possible remainders (or in Gauss’ terminology, **residues**) \(r = 0, 1, \ldots, m – 1 \) on division by \(m \). These \(m \) numbers constitute the **standard residue system** (SRS) mod \(m \).

Replacing anyone of the residues by a number to which it is congruent yields another **complete residue system** (CRS) (e.g., \{7, 50, 30, 3, –3, 5, –1\} is a CRS mod 7).

A least absolute residue system mod \(m \) is a CRS whose members have the least absolute values possible (e.g., \{–3, –2, –1, 0, 1, 2, 3\} is a least absolute residue system mod 7).
Binary exponentiation

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

What are the last two digits of the number 2^{284}?

In the absence of powerful software, it may be very difficult to compute this 86-digit number. Luckily, one can answer the question without computing this large power, since all we require is the standard residue mod 100 of the number.

Computing powers mod m is an exercise in artful use of simple operations. In particular, to compute the standard residue $a^n \mod m$, we employ a process called binary exponentiation: express the exponent in binary form as a sum of powers of 2, then perform the computation by repeated squaring and reduction of residues. We illustrate with the example above.

$$2^{284} = 2^{256+16+8+4}$$
$$= 2^{2^8+2^4+2^3+2^2}$$
$$= 2^{2^8 \cdot 2^4 \cdot 2^3 \cdot 2^2}$$
$$= 4^{2^7} \cdot 4^{2^3} \cdot 4^{2^2} \cdot 4^2$$
$$= 16^{2^6} \cdot 16^{2^2} \cdot 16^2 \cdot 16$$
\[256^{25} \cdot 256^2 \cdot 256 \cdot 16 \]
\[\equiv 56^{25} \cdot 56^2 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 36^{24} \cdot 36 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 96^{23} \cdot 36 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 16^{22} \cdot 36 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 56^2 \cdot 36 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 36 \cdot 36 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 96 \cdot 56 \cdot 16 \pmod{100} \]
\[\equiv 76 \cdot 16 \pmod{100} \]
\[\equiv 16 \pmod{100} \]

Thus, the last two digits of \(2^{284} \) are 16.

While this procedure is tedious for hand calculation, it is easily programmed into computational sofware.