Discrete Logarithms

If a is a primitive root mod m, then every element of U_m is a power of a. We can exploit this fact to create the notion of a discrete logarithm:

The discrete logarithm or index of x mod m with base a, written ind, is the congruence class of k mod $\varphi(m)$ where $x \equiv a^k \pmod{m}$.

The reason for the term logarithm should be clear:

Proposition If a is a primitive root mod m, then
1. $\text{ind}_a 1 \equiv 0 \pmod{\varphi(m)}$;
2. $\text{ind}_a a \equiv 1 \pmod{\varphi(m)}$;
3. $\text{ind}_a (xy) \equiv \text{ind}_a x + \text{ind}_a y \pmod{\varphi(m)}$;
4. $\text{ind}_a x^n \equiv n \cdot \text{ind}_a x \pmod{\varphi(m)}$;
5. $\text{ind}_a x \equiv \text{ind}_a y \pmod{\varphi(m)} \iff x \equiv y \pmod{m}$.

Proof of (5) Seeing as how $x \equiv a^{\text{ind}_a x} \pmod{m}$ and $y \equiv a^{\text{ind}_a y} \pmod{m}$, we have $x \equiv y \pmod{m} \iff a^{\text{ind}_a x} \equiv a^{\text{ind}_a y} \pmod{m} \iff a^{\text{ind}_a x - \text{ind}_a y} \equiv 1 \pmod{m} \iff \varphi(m) \mid \text{ind}_a x - \text{ind}_a y \iff \text{ind}_a x \equiv \text{ind}_a y \pmod{\varphi(m)}$. //

We can then use the discrete logarithm to solve exponential equations in congruence arithmetic in the same way that we use continuous logarithms to solve real-valued exponential equations.
Example: \(7^x \equiv 4 \pmod{17} \). We know that 3 is a primitive root \(\pmod{17} \), so we can use item (5) of the previous proposition to conclude that

\[
x \cdot \text{ind}_3 7 \equiv \text{ind}_3 7^x \equiv \text{ind}_3 4 \pmod{16}.
\]

But from a table of indices base 3 we find that \(\text{ind}_3 7 \equiv 11 \pmod{16} \) and \(\text{ind}_3 4 \equiv 12 \pmod{16} \). So our condition reduces to \(11x \equiv 12 \pmod{16} \), a linear congruence! This is easily solved to find \(x \equiv 4 \pmod{16} \).

Notice that we used a table of indices for a primitive root base in the example above. A straightforward computation of the powers of \(a \) \(\pmod{m} \) provides such a table, but it requires \(\varphi(m) \) power-reduction computations (raising \(a \) to the next highest power, then reducing \(\pmod{m} \)). Often in such problems, \(m = p \) is prime, whence we require \(p - 1 \) computational steps. Daniel Shanks has reduced the number of computations as follows:

There are \(p - 1 \) indices that must be computed; every index has a value in the range \(0 \leq \text{ind}_a x \leq p - 2 \). If arranged row by row in a rectangular array, the array would be nearest to being a square array when it has \(n = \left\lfloor \sqrt{p-1} \right\rfloor \) columns in it (and \(\left\lfloor \sqrt{p-1} \right\rfloor \) rows), as we now show.
The entries in this array which lie in the first row of the table will be the first n powers of the primitive root, $a^0, a^1, a^2, \ldots, a^{n-1} \mod(p-1)$, and the entries in the first column are the corresponding powers $a^0, a^n, a^{2n}, \ldots, a^{(q-1)n} \mod(p-1)$, where q is the quotient in the division of $p-1$ by n ($p-1 = qn + r, \ 0 \leq r < n$). Note that

\[
q = \left\lfloor \frac{p-1}{n} \right\rfloor = \left\lfloor \frac{p-1}{\sqrt{p-1}} \right\rfloor = \left\lfloor \sqrt{p-1} \right\rfloor
\]

so that the array will have $\left\lfloor \sqrt{p-1} \right\rfloor$ rows.

Now, to find the index for any x, it turns out that we do not need to compute the entire array of indices. Instead, we compute only the entries in the first column: $a^0, a^n, a^{2n}, \ldots, a^{qn} \mod(p-1)$, and then the n values $a^{-r}x \equiv (a^{-1})^r x \mod p$ for $r = 0, 1, \ldots, n-1$. If some residue appears in both lists, then $a^{-j}x \equiv a^{in} \mod p$ for some choices of i and j, $0 \leq i \leq q$, $0 \leq j < n$, whence $x \equiv a^{in+j} \mod p$ and $\text{ind}_ax \equiv in + j \mod (p-1))$. But of course, there must be a choice of i and j that satisfies this last congruence (by the division algorithm), so there will always be a unique such match.
Example: To solve the congruence $2^x \equiv 22 \pmod{37}$, first note that $2^{18} \equiv -1 \pmod{37}$, so that 2 is a primitive root mod 37. Then compute $\text{ind}_2 22$:

First, compute $n = \left\lfloor \sqrt{37} - 1 \right\rfloor = 6$.

Then, tabulate the powers $2^0, 2^1, 2^2, \ldots, 2^6 \pmod{37}$:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^i \pmod{37}$</td>
<td>1</td>
<td>27</td>
<td>26</td>
<td>36</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Next, tabulate the quantities $(2^{-1})^j 22 \pmod{37}$ for $0 \leq j \leq n - 1$, noting that $2^{-1} \equiv 19 \pmod{37}$:

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$19^j \cdot 22 \pmod{37}$</td>
<td>22</td>
<td>11</td>
<td>26</td>
<td>12</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Since 11 is the unique common value in both lists, we get that $2^{5 \cdot 6} \equiv (2^{-1})^1 \cdot 22 \pmod{37}$, or $2^{5 \cdot 6 + 1} \equiv 22 \pmod{37}$, whence $x \equiv 31 \pmod{36}$.