Generalizing the Fundamental Theorem of Algebra: Lagrange’s Theorem

Recall

The Fundamental Theorem of Algebra If \(f(x) \) is a polynomial of degree \(n \) with complex coefficients, then \(f(x) \) has \(n \) complex roots. //

It is most often utilized in this alternate form:

The Fundamental Theorem of Algebra If \(f(x) \) is a polynomial of degree \(n \) with real coefficients, then \(f(x) \) has at most \(n \) real roots. //

Notice that in both cases, we are considering polynomials whose coefficients are drawn from a field (either \(\mathbb{C} \) or \(\mathbb{R} \)). We have seen that \(\mathbb{Z}_p \), the set of congruence classes modulo a prime \(p \), also forms a field. So does the Fundamental Theorem of Algebra hold in this setting?

Example: \(x^2 \equiv 1 \pmod{7} \). We have seen (as a result of Exercise 3.2.6(a)) that this congruence has exactly two solutions, \(x \equiv \pm 1 \pmod{7} \).

Example: \(x^2 \equiv -1 \pmod{7} \). By testing the possibilities \(x \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7} \), we find that this congruence has no solutions.
Example: $x^2 + 3x + 4 \equiv 0 \pmod{7}$. By Exercise 3.4.10, we note that since $\Delta = 3^2 - 4 \cdot 1 \cdot 4 \equiv 0 \pmod{7}$, the congruence has only one solution, corresponding to the solution of the linear congruence $2 \cdot 1x + 3 \equiv 0 \pmod{7}$. That is, $x \equiv 2 \pmod{7}$.

Lagrange’s Theorem If $f(x)$ is a polynomial of degree n with integer coefficients so that at least one coefficient is not divisible by the prime p, then $f(x) \equiv 0 \pmod{p}$ has at most n roots modulo p.

Proof Induction on n:

Base case: When $n = 1$, we have a linear congruence of the form $ax \equiv b \pmod{p}$. So either $(a, p) = 1$ and there is one solution to the congruence, or $(a, p) = p$, whence $p \nmid b$, and there are no solutions mod p.

Induction step: Assume that the theorem holds for polynomials of degree less than some fixed n; suppose that $f(x)$ is a polynomial of degree exactly n. If $f(x)$ has no roots mod p, then the theorem holds, so we can assume that there is at least one root: $x \equiv a \pmod{p}$. Division of $f(x)$ by $x - a$ produces a quotient polynomial $q(x)$ and a remainder, which must have degree smaller than the divisor, hence is an integer r. That is, $f(x) = (x - a) \cdot q(x) + r$. But $f(a) \equiv 0 \pmod{p}$ implies that $r \equiv 0 \pmod{p}$. Therefore, $f(x) \equiv (x - a) \cdot q(x) \pmod{p}$.
Now if \(x \equiv b \pmod{p} \) is a distinct root of \(f(x) \), then
\[
0 \equiv f(b) \equiv (b - a) \cdot q(b) \pmod{p},
\]
and since \(b \not\equiv a \pmod{p} \), we can cancel the factor \((b - a) \) above, proving that \(b \) is a root of \(q(x) \) as well. However, \(q(x) \) has degree less than \(n \) and has at least one coefficient not divisible by \(p \) (else all the coefficients of \(f(x) \) are divisible by \(p \)), so the induction hypothesis applies to \(q(x) \), allowing us to conclude that \(q(x) \) has at most \(n - 1 \) roots \(\pmod{p} \). Therefore, \(f(x) \equiv 0 \pmod{p} \) has at most \(n \) distinct roots modulo \(p \). \hfill //

It is significant that Lagrange’s Theorem applies only to prime moduli.

Example: \(x^2 \equiv 1 \pmod{8} \) has four solutions \(x \equiv 1, 3, 5, 7 \pmod{8} \).

Corollary Suppose \(p \) is a prime and \(n | p - 1 \). Then \(x^n \equiv 1 \pmod{p} \) has exactly \(d \) solutions \(\pmod{p} \).

Proof Recall (Exercise 2.1.29) that if \(p - 1 = mn \),
\[
(*) \quad x^{p-1} - 1 = (x^n - 1)(x^{n(m-1)} + x^{n(m-2)} + \cdots + x^n + 1)
\]

Lagrange’s Theorem says that the two polynomial factors on the right have at most \(n \) and at most
At most $n + n(m-1) = p - 1$ roots, while Fermat’s Little Theorem says that the polynomial on the left has exactly $p - 1$ roots mod p. Therefore both factors on the right have the maximum number of roots possible. In particular, $x^n - 1$ has n roots mod p. //

Corollary If $p \equiv 1 \pmod{4}$, then $x^2 \equiv -1 \pmod{p}$ has a solution.

Proof Write $p = 4k + 1$. Then $n = 2k | p - 1$, and (*) becomes

$$x^{p-1} - 1 = (x^{2k} - 1)(x^{2k} + 1).$$

By Lagrange’s Theorem, the factors on the right have at most $2k$ roots each while by Fermat’s Little Theorem the polynomial on the left has exactly $4k = p - 1$ roots mod p. Thus, since neither of the factors on the right of (**) can have a common root, both have exactly $2k$ roots. In particular, $x^{2k} \equiv -1 \pmod{p}$ has $2k$ roots. If $x \equiv a \pmod{p}$ is one of these, then $(a^k)^2 \equiv -1 \pmod{p}$, whence $x \equiv a^k \pmod{p}$ is a solution to $x^2 \equiv -1 \pmod{p}$. //