Ring Homomorphisms

In analogy with group homomorphisms, we define a map $\varphi: R \rightarrow S$ between two rings R and S to be a **ring homomorphism** if it is operation-preserving with respect to both of the ring operations, i.e.,

$$\varphi(a + b) = \varphi(a) + \varphi(b) \quad \text{and} \quad \varphi(ab) = \varphi(a)\varphi(b).$$

A ring homomorphism which is also a bijection between the two rings is a **ring isomorphism**.

Examples:
The complex conjugation map $a + bi \mapsto a - bi$ is a ring isomorphism between \mathbb{C} and itself (indeed, it is a **ring automorphism**)
The map from \mathbb{Z} to \mathbb{Z}_n given by $k \mapsto k \mod n$ is the natural homomorphism between these rings
Given some fixed real number a, the map from $\mathbb{R}[x]$ to \mathbb{R} given by $p(x) \mapsto p(a)$ is a ring homomorphism
If R is a commutative ring of characteristic 2, then the map $x \mapsto x^2$ is a ring homomorphism between R and itself
Since every ring homomorphism $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{30}$ is also an additive group homomorphism, we know it completely determined by the value of $\varphi(1)$; that is, $\varphi(x) = x \cdot \varphi(1)$, and as $0 = \varphi(0) = \varphi(12) = 12\varphi(1)$, $\varphi(1)$ must be a multiple of 5. But $\varphi(1) = \varphi(1^2) = \varphi(1)^2$ in
\mathbb{Z}_{30}, so this means $\varphi(1)$ can equal 0, 10, 15 or 25. Therefore, there are four such homomorphisms: the maps $\varphi(x) = 0$, $\varphi(x) = 10x$, $\varphi(x) = 15x$, and $\varphi(x) = 25x$.

Theorem Let $\varphi: R \to S$ be a ring homomorphism, and let A be a subring of R and B an ideal of S.
1. For any $r \in R$ and positive integer n,
 \[\varphi(nr) = n\varphi(r) \text{ and } \varphi(r^n) = \varphi(r)^n; \]
2. $\varphi(A)$ is a subring of S;
3. if A is an ideal and φ is onto, then $\varphi(A)$ is an ideal of S;
4. the pullback $\varphi^{-1}(B)$ is an ideal of R;
5. if R is commutative, then $\varphi(R)$ is commutative;
6. if R has unity element 1, S is not trivial and φ is onto, then $\varphi(1)$ is the unity element of S;
7. φ is an isomorphism \iff φ is onto and $\text{Ker} \varphi$ is the trivial subring of R;
8. if $\varphi: R \to S$ is an isomorphism, then $\varphi^{-1}: S \to R$ is an isomorphism.

Proof Straightforward. //

Theorem Let $\varphi: R \to S$ be a ring homomorphism. Then $\text{Ker} \varphi$ is an ideal of R.

Proof Left as an exercise. //
The Fund Thm of Ring Homomorphisms

Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $R/\ker \varphi \cong \varphi(R)$ via the natural isomorphism $r \cdot \ker \varphi \mapsto \varphi(r)$.

Proof Also left as an exercise. //

Theorem Every ideal A of the ring R can be represented as the kernel of some homomorphism of R, namely the natural map $r \mapsto r + A$ from R to R/A.

Proof Obvious. //

Theorem Let R be a ring with unity element 1. Then the map $\varphi: \mathbb{Z} \rightarrow R$ given by $\varphi(n) = n \cdot 1$ is a ring homomorphism.

Proof Suppose first that m and n are nonnegative integers. Then

$$\varphi(m + n) = (m + n) \cdot 1 = \underbrace{(1 + 1 + \cdots + 1)}_{m + n \text{ terms}} =$$

$$\underbrace{(1 + 1 + \cdots + 1)}_{m \text{ terms}} + \underbrace{(1 + 1 + \cdots + 1)}_{n \text{ terms}} = m \cdot 1 + n \cdot 1 = \varphi(m) + \varphi(n)$$
if \(m \) and \(n \) are both negative,

\[
\varphi(m + n) = (m + n) \cdot 1 \\
= (-m - n)(-1) \\
= (-m)(-1) + (-n)(-1) \\
= m \cdot 1 + n \cdot 1 \\
= \varphi(m) + \varphi(n)
\]

and if \(m \) is nonnegative and \(n \) is negative, then

\[
\varphi(m + n) = (m + n) \cdot 1 \\
= (m - |n|) \cdot 1 \\
= \overbrace{(1+1+\cdots+1)}^{m \text{ terms}} - \overbrace{(1+1+\cdots+1)}^{\text{|n| terms}} \\
= m \cdot 1 - |n| \cdot 1 \\
= m \cdot 1 + n \cdot 1 \\
= \varphi(m) + \varphi(n)
\]

So \(\varphi \) is addition-preserving.

To show that \(\varphi \) is multiplication-preserving, suppose that \(m \) is nonnegative. Then
\[\varphi(mn) = (mn) \cdot 1 \]
\[= \left(n + n + \cdots + n \right) \cdot 1 \]
\[= n \cdot 1 + n \cdot 1 + \cdots + n \cdot 1 \]
\[= \varphi(n) + \varphi(n) + \cdots + \varphi(n) \]
\[= (m \cdot 1)\varphi(n) \]
\[= \varphi(m)\varphi(n) \]

and if both \(m \) and \(n \) are negative, then
\[\varphi(|m|) + \varphi(m) = \varphi(|m| + m) = \varphi(0) = 0 \]
\[\Rightarrow \varphi(|m|) = -\varphi(m) \]

so
\[\varphi(mn) = \varphi(|m| \cdot |n|) \]
\[= \varphi(|m|)\varphi(|n|) \]
\[= -\varphi(m) \cdot -\varphi(n) \]
\[= (-1)^2 \varphi(m)\varphi(n) \]
\[= \varphi(m)\varphi(n) \]

This completes the proof. //
Corollary Every ring R with unity element 1 contains a subring isomorphic to \mathbb{Z} if char $R = 0$, and contains a subring isomorphic to \mathbb{Z}_n if char $R = n > 0$.

Proof Let $S = \{k \cdot 1 \mid k \in \mathbb{Z}\}$. Then S is the subring of R equal to the image of \mathbb{Z} under the homomorphism $\varphi: \mathbb{Z} \to R$ given by $\varphi(k) = k \cdot 1$. By the First Isomorphism Theorem then, $S \approx \mathbb{Z} / \ker \varphi$.

But if char $R = 0$, then $\ker \varphi$ is trivial, so $S \approx \mathbb{Z} / \ker \varphi = \mathbb{Z} / \{0\} \approx \mathbb{Z}$; if char $R = n$, then $\ker \varphi = n\mathbb{Z}$, so $S \approx \mathbb{Z} / \ker \varphi = \mathbb{Z} / n\mathbb{Z} \approx \mathbb{Z}_n$. //

Corollary For any positive integer m, the map $\varphi: \mathbb{Z} \to \mathbb{Z}_m$ given by $\varphi(n) = n \mod m$ is a ring homomorphism.

Proof In \mathbb{Z}_m, $n \cdot 1 = n \mod m$. //

Corollary If F is a field of characteristic 0, then F contains a field isomorphic to \mathbb{Q}, and if char $F = p$ is positive, then F contains a field isomorphic to \mathbb{Z}_p.

Proof The case of positive characteristic has already been handled, so suppose char $F = 0$. Then F contains a subring S isomorphic to \mathbb{Z}. If
$T = \{ rs^{-1} \mid r, s \in S \text{ with } s \neq 0 \}$, then T is also a subring of F all of whose nonzero elements are units (why?) and which is isomorphic to \mathbb{Q} (why?). //

These results can be viewed as indicating the primary importance of the rings \mathbb{Z}, \mathbb{Z}_n, and the fields \mathbb{Z}_p, and \mathbb{Q}. In particular, note that amongst these, \mathbb{Z} is a subring of \mathbb{Q}. Indeed, \mathbb{Q} is the set of all quotients of elements of \mathbb{Z}. This relationship can be generalized to any integral domain, as follows.

Let D be an integral domain; then define the set $S = \{(a,b) \mid a, b \in D \text{ with } b \neq 0\}$ and consider the relation \equiv on the set S defined by

$$(a,b) \equiv (c,d) \iff ad = bc.$$

Then \equiv is an equivalence relation (why?). Denote the equivalence class containing the pair (a,b) by the symbol a/b and let F be the set of these equivalence classes.

We make F into a ring by putting

$$a/b + c/d = (ad + bc)/bd \quad \text{and} \quad (a/b)(c/d) = ac/bd.$$

Why are these well-defined operations? First, note that if b and d are nonzero, then so is bd; that is,
these definitions, F is closed under both operations. Now, if $a' / b' = a/b$ and $c' / d' = c/d$, then $a'b = ab'$ and $c'd = cd'$, so

$$(ad + bc)b'd' = (ab')dd' + bb'(cd')$$
$$= (a'b)dd' + bb'(c'd)$$
$$= (a'd' + b'c')bd$$

whence $(a' / b') + (c' / d') = (a / b) + (c / d)$; similarly, $(a'c')(bd) = (a'b)(c'd) = (ab')(cd') = (ac)(b'd')$ implies that $(a' / b')(c' / d') = (a / b)(c / d)$.

Note that $0/1 (= 0/b$ for any nonzero b in D) is the zero element of F and the additive inverse of a/b is $-a/b$. If D has unity element 1, then $1/1 (= b/b$ for any nonzero b in D) is the unity element of F and if a/b is nonzero in F, then $a \neq 0$ in D, and the multiplicative inverse of a/b is b/a. Thus, F is a field, called the fraction field (or quotient field) of D.

Theorem Every integral domain D has a fraction field F containing a subring isomorphic to D.

Proof The map $\varphi: D \rightarrow F$ given by $\varphi(a) = a / 1$ is an isomorphism between D and its image in F. //

Example: The integral domain $\mathbb{Q}[x]$ has as fraction field the set of rational expressions $p(x)/q(x)$ with nonzero denominator, which we denote by $\mathbb{Q}(x)$.